Arsenic trioxide inhibits human cancer cell growth and tumor development in mice by blocking Hedgehog/GLI pathway.
نویسندگان
چکیده
The Hedgehog (Hh) pathway is activated in some human cancers, including medulloblastoma. The glioma-associated oncogene homolog (GLI) transcription factors are critical mediators of the activated Hh pathway, and their expression may be elevated in some tumors independent of upstream Hh signaling. Thus, therapies targeting GLI transcription factors may benefit a wide spectrum of patients with mutations at different nodal points of the Hh pathway. In this study, we present evidence that arsenic trioxide (ATO) suppresses human cancer cell growth and tumor development in mice by inhibiting GLI1. Mechanistically, ATO directly bound to GLI1 protein, inhibited its transcriptional activity, and decreased expression of endogenous GLI target genes. Consistent with this, ATO inhibited the growth of human cancer cell lines that depended on upregulated GLI expression in vitro and in vivo in a xenograft model of Ewing sarcoma. Furthermore, ATO improved survival of a clinically relevant spontaneous mouse model of medulloblastoma with activated Hh pathway signaling. Our results establish ATO as a Hh pathway inhibitor acting at the level of GLI1 both in vitro and in vivo. These results warrant the clinical investigation of ATO for tumors with activated Hh/GLI signaling, in particular patients who develop resistance to current therapies targeting the Hh pathway upstream of GLI.
منابع مشابه
Arsenic Trioxide Prevents Osteosarcoma Growth by Inhibition of GLI Transcription via DNA Damage Accumulation
The Hedgehog pathway is activated in various types of malignancies. We previously reported that inhibition of SMO or GLI prevents osteosarcoma growth in vitro and in vivo. Recently, it has been reported that arsenic trioxide (ATO) inhibits cancer growth by blocking GLI transcription. In this study, we analyzed the function of ATO in the pathogenesis of osteosarcoma. Real-time PCR showed that AT...
متن کاملArsenic trioxide inhibits viability of pancreatic cancer stem cells in culture and in a xenograft model via binding to SHH-Gli
OBJECTIVE Overexpression of the sonic hedgehog (SHH) signaling pathway is an essential characteristic of pancreatic cancer stem cells (PCSCs) and arsenic trioxide (ATO) is described as a SHH inhibitor. This study evaluates whether ATO has the potential to inhibit viability of PCSCs via binding to SHH-Gli proteins. METHODS Cell counting kit-8 and flow cytometry were used for analyzing apoptosi...
متن کاملDarinaparsin inhibits prostate tumor-initiating cells and Du145 xenografts and is an inhibitor of hedgehog signaling.
Prostate cancer is the leading cause of cancer-related death in men in the United States. A major cause of drug resistance in prostate and other epithelial tumors may be due to the presence of a fraction of tumor cells that retain the ability to initiate tumors and hence are termed tumor-initiating cells (TIC) or cancer stem cells. Here, we report that darinaparsin, an organic derivative of ars...
متن کاملArsenic: a potentially useful poison for Hedgehog-driven cancers.
Dysregulated Hedgehog (Hh) signaling has been implicated in a growing number of human cancers. To date, most antagonists of this signaling pathway that have been developed target the Hh receptor Smoothened. However, these are predicted to have minimal effect when the pathway is activated as a result of dysregulation downstream of this receptor. In this issue of the JCI, Beauchamp and colleagues...
متن کاملThe hedgehog/Gli-1 signaling pathways is involved in the inhibitory effect of resveratrol on human colorectal cancer HCT116 cells
Objective(s): The study aimed to investigate the effects of resveratrol on colorectal cancer HCT116 cells, including cell viability, apoptosis, and migration, and the partial mechanisms focused on hedgehog/gli-1 signaling pathways. Materials and Methods: We chose the appropriate time and concentration of recombinant human Sonic hedgehog (Shh) stimulation by cell viability. The proportion of cel...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of clinical investigation
دوره 121 1 شماره
صفحات -
تاریخ انتشار 2011